Here are some important algebraic Identities:
- (a + b)2 = a2 + 2ab + b2
- (a - b)2 = a2 - 2ab + b2
- (a + b)3 = a3 + b3 + 3ab(a + b)
= a3 +3a2b + 3ab2 + b3
- (a - b)3 = a3 - b3 - 3ab(a - b)
= a3 - 3a2b + 3ab2 - b3
- a2 - b2 = (a - b).(a + b)
- (a + b)2 + (a - b)2 = 2a2 + 2b2
- (a + b)2 - (a - b)2 = 4ab
- a3 + b3 = (a + b).(a2 - ab + b2)
- a3 - b3 = (a - b).(a2 + ab + b2)
- a3 + b3 + c3 - 3abc = (a + b + c).(a2 + b2 + c2 - ab - bc - ca)
if a + b + c = 0,
then a3 + b3 + c3 = 3abc
- (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
- 1 + 2 + 3 + ....... + n =
n(n+1) 2
- 12 + 22 + 32 + ....... + n2 =
n(n+1)(2n+1) 6
- 13 + 23 + 33 + ....... + n3 =
( n(n+1) )2 2
- sum of 1st n odd numbers = n2
- sum of 1st n even numbers = n(n+1)
- if an = am, then n = m
- if an = bn,
then a = b, (if n is odd), and
a = +b or -b (if n is even)
To, readily access formula book on your mobile, you can open tools section on Tricky Maths App.
= a3 +3a2b + 3ab2 + b3
= a3 - 3a2b + 3ab2 - b3
if a + b + c = 0,
then a3 + b3 + c3 = 3abc
n(n+1) | |
2 |
n(n+1)(2n+1) | |
6 |
( | n(n+1) | )2 | |
2 |
then a = b, (if n is odd), and
a = +b or -b (if n is even)
No comments:
Post a Comment